Effects of measurement errors in predictor selection of linear regression model

نویسندگان

  • Kimmo Vehkalahti
  • Simo Puntanen
  • Lauri Tarkkonen
چکیده

Measurement errorsmay affect the predictor selection of the linear regressionmodel. These effects are studied using ameasurement framework, where the variances of the measurement errors can be estimated without setting too restrictive assumptions about the measurement model. In this approach, the problem of measurement is solved in a reduced true score space, where the latent true score is multidimensional, but its dimension is smaller than the number of the measurable variables. Various measurement scales are then created to be used as predictors in the regression model. The stability of the predictor selection as well as the estimated predicted validity and the reliability of the prediction scales is examined by Monte Carlo simulations. Varying the magnitude of the measurement error variance four sets of predictors are compared: all variables, a stepwise selection, factor sums, and factor scores. The results indicate that the factor scores offer a stable method for predictor selection, whereas the other alternatives tend to give biased results leading more or less to capitalizing on chance. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions

Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...

متن کامل

Comparison Of Hyperbolic And Constant Width Simultaneous Confidence Bands in Multiple Linear Regression Under MVCS Criterion

‎A simultaneous confidence band gives useful information on the reasonable range of the unknown regression model‎. ‎In this note‎, ‎when the predictor variables are constrained to a special ellipsoidal region‎, ‎hyperbolic and constant width confidence bonds for a multiple linear regression model are compared under the minimum volome confidence set (MVCS) criterion‎. ‎The size of one speical an...

متن کامل

Robust Variable Selection in Functional Linear Models

We consider the problem of selecting functional variables using the L1 regularization in a functional linear regression model with a scalar response and functional predictors in the presence of outliers. Since the LASSO is a special case of the penalized least squares regression with L1-penalty function it suffers from the heavy-tailed errors and/or outliers in data. Recently, the LAD regressio...

متن کامل

A Note on the Estimation of Linear Regression Models with Heteroskedastic Measurement Errors

I consider the estimation of linear regression models when the independent variables are measured with errors whose variances differ across observations, a situation that arises, for example, when the explanatory variables in a regression model are estimates of population parameters based on samples of varying sizes. Replacing the error variance that is assumed common to all observations in the...

متن کامل

Interpreting the evolutionary regression: the interplay between observational and biological errors in phylogenetic comparative studies.

Regressions of biological variables across species are rarely perfect. Usually, there are residual deviations from the estimated model relationship, and such deviations commonly show a pattern of phylogenetic correlations indicating that they have biological causes. We discuss the origins and effects of phylogenetically correlated biological variation in regression studies. In particular, we di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2007